
AD-A258 318

Lehigh University telephone (215) 758-3950

Sherman Fairchild Center for Solid State Studies 161

Bethlehem, Pennsylvania 18015-3185

OFFICE OF NAVAL RESEARCH

FINAL TECHNICAL REPORT DTIC
for 0 ELECTE

1 September 1989 through 30 September 1992 S DEC 2 1992D1

for VC

Contract N00014-89-J-3149

R&T PROJECT: 1d14001--01

Title of Contract

"Electrically Modifiable Nonvolatile SONOS
Synapses for Electronic Neural Networks"

Name of Principal Investigator

D____,___i ,_- _ n Dr. Marvin H. White

0i>t=•:xr .Name of Organization

Lehigh University
Sherman Fairchild Center - Bldg. 161

Bethlehem, PA 18015
(215) 758-4421

Dr. Clifford Lau
Department of the Navy
Office of the Chief of Naval Research -5ý
800 North Quincy Street, Code 1114SE ///" /

Arlington, VA 22217-5000 92--29828
(202) 696-4961 IilI II III u D96



Final Report for DARPA/ONR

by

Marvin H. White, Chun-Yu Malcolm Chen, Margaret French and
Amit Banerjee

Lehigh University
Sherman Fairchild Center

161 Memorial Drive East Ao oas For

Bethlehem, PA 18015 -INS G&W
unc U&d C1

! Di.-,t rlmtI Ion/

DTIC QIJI, ITY IVSPE )C' e iAv-t Iabiity Codes

Dt-t ipecial



Abstract

This research addresses the implementation of an electronic element,
which emulates the biological synaptic interconnection, in an artificial
electronic neural system. The basic interconnection, or the weight, consists
of an electrically reprogrammable, nonvolatile, analog conductance which
programs at 5V levels. In addition, the fabrication technology for this
synaptic interconnection is compatible with existing CMOS VLSI processes.
The attractive features of this synaptic weight will be discussed in this
report. Furthermore, this report examines the material needs, the. device
structures, the use of the synaptic weights in a two-tap weight linear
adaptive neural-like circuit and the issue of integrating both the synaptic
weight elements and the peripheral circuit onto a single silicon wafer.

1. Introduction

The current surge of enthusiasm for neural network aims to construct systems that can learn

or modify their behavior according to the environment. There are many similarities which exist

between this new class of machine and human beings. One of these similarities is the massive

parallelism in processing information. Parallel processing1 concepts are in stark contrast to the

operations of modem digital computers that perform large numbers of sequential operations very

rapidly and accurately.

Researchers believe the synaptic junctions in a neural system are the local memory sites

and provide the physiological basis for the distributed parallel systems. 2, 3 These synapses are not

only modifiable but also serve the functions of storing and transmitting information from neuron to

neuron. To reduce the complex modelling required for the synaptic interconnection, the

representation of the synapse has been simplified to a single ideal junction between the output of

neurons (axons) and the inputs to neurons (dendrites). Synaptic modification requires information

from the input and the output of the neuron in order to perform complex recognition. Therefore, the

nature of the synaptic junction and the principle or algorithm which controls local organization at

the neuron level become two central issues pertaining to neural networks research.

The recent interest in neural networks4' 5 is a direct consequence of the programmability

which is an essential feature of learning machines, associative memories, and adaptive signal

processors. Programmability requires a modification of the synaptic strength in the language of

neurobiology. If we seek an efficient hardware implementation of electronic neural systems, then

the synapses - as well as the network itself- should be analog. Several attempts have been made to

realize programmable synapses, either digitally6 or with temporary storage on the input capacitance
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of a MOS Transistor 7' 8 to alter the latter's analog conductance. The former approach stores the

weight information in digital registers and thus suffers from excessive chip area and power

consumption. On the other hand, although the MOS Transistor provides an analog synaptic

strength (weight) in a small chip area, the weight is temporary and requires periodic refresh similar

to a DRAM. Thus, this dynamic refresh approach lacks the nonvolatility and storage properties of

an EEPROM cell. Researchers at Intel have reported an electrically trainable artificial neural

network with floating gate device as the synaptic element. 9 Although the floating gate device has

the property of nonvolatility, its high programming voltage requirement prevents it from being

technologically compatible with scaled CMOS process.

In this research report we describe a new approach to obtain an electrically reprogrammable or

modifiable synaptic weight to be used as a basic functional element in electronic neural systems.

The salient features of this network element are the following:

"* Low programming voltages(5-10V) which are compatible with peripheral

CMOS VLSI technology in contrast with Floating Gate approaches.

"* Low power dissipation (< I gW).

"* Dynamic Range of 1000:1 (60 dB).

* Nonvolatile features which mimic biological synapses with respect to memory
loss (e.g. 20% of the information available after 10 years) and reinforced
learning (e.g. successive interrogation enhances memory retention).

* Small synaptic area on a VLSI chip (e.g. less then 20%=n2 for 1.25 ýun feature
sizes).

* Extensive erase/write programming cycles are possible with this synapse (>
108 cycles) in contrast with Floating Gate approaches.

* Inherent radiation damage resistance beyond a total dosage of 1MRad (Cow°)
and 109 Rad/sec transient which is not possible with Floating Gate technology.
Thus, if radiation damage resistance of neural networks is an important issue,
then the SONOS devices have demonstrated success in this area.

The basic nonvolatile device structure, which we describe in this report was first introduced as

a digital nonvolatile memory cell in the summer of 1987 at the IEEE Device Research Conference1 °

by researchers at Lehigh University. We have had a continual involvement over a 20 year period

with nonvolatile memories, beginning in the late 60's where we had programming voltages of 25V, to

the late 80's with our novel 5V SONOS device structures. During this time period we introduced the

use of CCD's and nonvolatile memories 11. 12, 13 in nonvolatile charge addressed memories

(NOVCAM). These ideas have been employed recently for neural network circuits by researchers at

2



Lincoln Laboratories. 14 Our recent work recognizes the inherent analog conductance aspect of the

nonvolatile SONOS memory device which makes it a perfect candidate for the modifiable synapse in

an electronic neural system.

In addition to the realization of an electronic element to simulate the synaptic interconnections

of a neural network, we must have a method or algorithm to change or. reprogram these

interconnections and, thus, alter the connectivity of the neural network. We have had experience

with a particular form of an algorithm, namely, the Widrow-Hoff Least Mean Square (LMS)15 error

algorithm or in neural network terminology - the so-called 'delta rule'. In the late 70's we researched

a CCD Adaptive Analog Signal Processor 16' 17 which realizes the 'delta rule' with CCD analog delay

lines and electrically reprogrammable MNOS analog conductance weights. These weights were

nonvolatile memory transistors whose analog conductance was programmed with voltages ranging

from 15-25V. Our recent work on 'scaling' these programmable analog conductances has resulted in

a new device structure, called the SONOS nonvolatile memory transistor, which can be

reprogrammed with voltages ranging from 5-10V. This work has recently been described at the 1991

11th IEEE Nonvolatile Semiconductor Memory Workshop.18 These voltage levels are compatible

with 'scaled' CMOS VLSI technology which has 12-15V breakdown voltages for 1.25gan feature sizes.

In this report we describe our recent work on the electrically reprogrammable (modifiable) SONOS

nonvolatile synapse and a simple electronic neuron with 2 synaptic weights. We discuss this two-tap

weight linear adaptive neuron in terms of the technology, the electrical characteristics of the

synapses, and their performance in this simple test vehicle - a 'delta rule' adaptive signal processor.

2. Technology and Characterization of the SONOS Synaptic Weight

The programmable synapse is the result of an ongoing effort at Lehigh University to 'scale the

programming voltages required to alter the analog conductance of a nonvolatile memory transistor

with a multi-layer (oxide-nitride-oxide) gate insulator as shown in Fig. 1. Recent efforts in scaling

this device have resulted in a SONOS (Silicon/Blocking Oxide/Nitridefrunneling Oxide/Silicon)

nonvolatile memory transistor which is electrically reprogrammable at CMOS voltage levels.

Typically, the tunneling oxide is 15-25k, the storage nitride is 50- 100X and the blocking oxide is

35-50k. Fig.2 shows the Transmission Electron Microscope (TEM) photograph of the cross sectional

view of the SONOS transistor. This device is similar to a SNOS transistor except for the addition of

the blocking oxide which is used to inhibit injection of carriers from the polysilicon gate electrode
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and also to improve the memory retention by prohibiting the transfer of stored charge from the

nitride to the gate electrode. As a result, the blocking oxide permits the entire dielectric sandwich to

be scaled to dimensions where programming voltages ranging from 5-10 V are possible.

When the SONOS device is subjected to a positive (or negative) programming pulse, electrons

(or holes) are injected into the silicon nitride layer by means of tunneling across the thin tunnel

oxide. The injected charges are trapped by the silicon nitride and, thus, shift the threshold voltage

positively (or negatively). The threshold voltage of a SONOS transistor can be written as

Qf Xob Xa - 2 44 1sl q NB _ _ BVT = OGs-?ý-+( )O .- (1)
Ceff go NCeff

where OB is the bulk potential, OGS is the gate to semiconductor workfuinction, Qf is the fixed charge

at the tunneling oxide-silicon interface, ex and eN are the dielectric permittivities of the oxide and

nitride, esi is the dielectric permittivity of the bulk silicon, xot is the tunnel oxide thickness, Xob is the

blocking oxide thickness, xn is the nitride thickness, xis the charge centroid in the insulator, and QN

is the charge stored in the nitride, NB is the bulk doping density, and

Ceff = (2)
Pox

Xot + -n+ Xob

We assume the tunnel oxide and blocking oxide have the same dielectric permittivity; even though, it

is known that the tunnel oxide is silicon rich and the blocking oxide is an oxynitride. The values of

the charge centroid 2 and the variable charge stored in the nitride QN will change as the device is

written or erased. The analog conductance of the SONOS synaptic weight is given as

_ w
gd, = 1effT Ceff (VGs-VTH) (3)

where AefT is the effective carrier mobility, VGS is the read voltage, and VTH is the electrically

modifiable threshold voltage given in equation (1). Therefore, there are two ways which the analog

channel conductance can be altered: (1) change the value of VGS or (2) change the value of VTH by

altering the stored charge, QN, in the nitride. In our study, the latter approach is chosen.

The SONOS transistors have been characterized for their memory properties with the test

station described by Roy et. al. 19. This test station allows one to take both erase/write and retention
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measurements. To investigate the memory loss/retention properties of the synaptic weight element,

retention measurements are taken. The retention characteristics are obtained by applying positive

(negative) five volts to the gate for 10 seconds to place the device in the write (erase) state and then

measuring the turn-on voltage after a varying delay time. The turn-on voltage is related to the

threshold voltage by

VT = VTH+ (4)

with IDS as the forced drain to source current during measurement and

1=eff (k) Ceff (5)

where W is the width of the transistor, L is the length of the transistor, and 4eff is the effective

mobility. The effective mobility is the bulk mobility reduced by Coulombic and surface scattering of

carriers in the inversion layer. This mobility is influenced by the gate and substrate voltages. 20 For

a SONOS transistor, retention measurements indicate that greater than 20 percent of the memory

window remains after a projected 10 year delay time as shown in Fig. 3. The erase/write

measurements indicate the programming speed of the synaptic weight element. To measure the

writing (erasing) speed, negative (positive) five volts are applied to the gate for 10 seconds to place

the device in the erase (write) state. Then, positive (negative) five volts are applied to the gate with

varying pulse widths and the turn-on voltage is measured after each pulse width. The erase/write

characteristics of the SONOS memory transistor are shown in Fig. 4. A wide dynamic range is one

of the essential properties for the synaptic weight element, and Fig. 5 illustrates a 60 dB in dynamic

range after ±5V programming for the SONOS synaptic weight. In addition, a recent study in

reliability has demonstrated the inherent resistance of the SONOS memory transistor to radiation

damage (VTH = 0.IV, with VGS = + 5V at lMRad Co 60 radiation).21

3. Single-level Linear Adaptive Neuron

We have incorporated the SONOS synaptic weights into a single-level linear neuron-like

circuit using a Widrow-Hoffs delta learning rule.15 The circuit is built with a hybrid breadboard of

CMOS components for the control logic and the algorithm implementation and the SONOS

nonvolatile memory transistors to demonstrate the voltage level compatibility of both SONOS and

CMOS technologies. Many researchers believe that the neural system is made up of several layers'
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of neurons and Fig. 6 shows the multi-layer architecture of an artificial neural network. The first

layer of neurons, the input layer, can be best thought as the sensory neurons in a human body. The

weight connections between the input layer and the middle hidden layer are normally considered to

be feedforward and fixed. On the other hand, the weight connections between the middle hidden

layer and the output layer are considered to be feedback in nature. Our work has concentrated on

the implementation of two neurons in the hidden layer and one output neuron as highlighted in the

figure.

Fig. 7 shows the block diagram of the single-level linear adaptive neuron. A desired response

(or external teacher), d(m), is presented to the neuron as the training signal. If the output of the

linear adaptive neuron is not trained, then there exists a mismatch between the output of the linear

adaptive neuron, y(m), and the desired response, d(m),

e(m) = d(m) - y(m) (6)

where e(m) is the error generated. This error is then used by a learning algorithm, namely the

Clipped-data Least Mean Square Error algorithm, to minimize the error generated and thereby

training the neuron to the correct response. This single-level linear adaptive neuron has two tap

weights, each weight composed of two SONOS analog electrically reprogrammable conductances as

shown in Fig. 8. Since the synaptic weight may be either positive or negative in value, we have

chosen a differential weighting scheme. If the analog conductance connecting the positive summing

path to the differential operational amplifier is greater than the analog conductance connecting the

negative summing path to the differential operational amplifier, then the weight is positive in value.

On the other hand, if the opposite case is true, then the weight is negative in value. A positive

weight value corresponds to an excitatory synaptic strength and a negative weight value corresponds

to an inhibitory synaptic strength.

In operation, the input signal x(t) is passed through a switched capacitor analog delay line

where the input signal is sampled and delayed to create four tapped signal outputs xo(m), x1(m), x.,(m),

and . 3(m). These tapped signals multiply to their corresponding programmable weights Wo, W1, W,,

and W3, and the result is summed linearly at the summing amplifier. The output y(m) cart be

expressed as
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3
y(m) = Wk(m).x, (7)

where m is the time index and k is the spatial index. A correlated double sampling technique 22 is

employed in the circuit to remove the unwanted noise and offset voltages irtroduced by the

operational amplifiers and switching circuits. The linear adaptive neuron is configured to perform a

Widrow-Hoffs delta rule as

Wk(m+1) = Wk(m) + A Wk(m) (8)

where A W(m) is the incremental weight to be calculated by the clipped-data least mean square error

(C-LMSE) algorithm 23 :

A Wk(m) = 2g Ie(m)l .Sgn(F(m)] Sgn[x(m-k)] (9)

where g. is the convergence factor. Compared to the regular Least Mean Square Error algorithm, the

input signal amplitude is clipped in the learning algorithm. This algorithm eliminates the usage of a

four quach-ant multiplier needed for the LMS error algorithm. The sign multiplication in the

incremental weight calculation is essentially an Exclusive OR operation and the output of the

Exclusive OR gate controls the path of proper gate programming voltage for the SONOS synaptic

weight. If the convergence factor is small, then the system will minimize the misadjustment caused

by the variance of the weights; however, this also results in a long convergence time. Conversely, if

we choose to use a larger convergence factor, then the convergence time of the system is shortened

with the penalty of larger misadjustment. The backpropagating error is used to calculate the

adjustments to minimize the system error as shown in equation (9). Once the error is minimized,

the system is said to be in its steady state condition 24 where the output of the system, y(m), is the

best match of the training signal, d(m), or the 'external teacher'.

The incremental weight update is essentially a cross correlation between the error and the

clipped input data vectors. The update stops when the two vectors become orthogonal. Sometimes,

the network may be overcorrected initially, however, the error will be quickly minimized by- the

learning algorithm and the system reaches its desired response. The digital delay line provides the

sign information of the input to the learning algorithm. A special steering network is designed to

switch the proper programming voltages to the gate terminals of the SONOS transistors once the
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incremental weights are calculated.

4. Experimental Results

There are two main types of characteristics from which the electrical performance of the linear

adaptive neuron can be evaluated. The first characteristic, namely the output and training signals

versus time characteristics, gives the information on how well the output signal approximates the

training signal especially in the phase relationship between these two signals. The second

characteristic, namely the error signal versus time characteristics, shows how fast the linear

adaptive neuron adapts before it reaches its minimum error. A typical output and training signals

versus time characteristic consists of two parts: the initialized and the adapted part. In the

initialized part, the weights are first initialized to a known state (either the fully positive or the fully

negative state) and then the weights are subjected to a reading voltage to read out the weight

information and the output signal and the training signal are compared and recorded. The linear

adaptive neuron is then allowed to adapt itself to the training signal and the results are shown in

the adapted part of the characteristics. Figure 9 shows the output and training signal versus time

characteristic.

A typical error signal versus time characteristic is obtained with initialized weight values and

monitoring the error signal with time. Our observation indicates the weight initialization scheme

affects the convergence behavior of the linear adaptive neuron. This phenomenon is attributed to

the nonsymmetric erase and write characteristics of the SONOS transistor. Therefore, one weight

initialization scheme may require more erase action taking place than another weight initialization

scheme, causing a difference in convergence characteristics. Figures 10 shows a typical error versus

time characteristic.

5. Technical Achievements

During the period of investigation, several technical achievements have been accomplished.

Since 4he programming characteristics of the SONOS synaptic weight elements strongly govern the

performance of the integrated solid-state linear adaptive neuron, the optimization of the SONOS

.synaptic weight element becomes one of the key issues of this research effort. We have started our

research with a SONOS device structure of 20AX of tunneling oxide, 96X of nitride, and 25k of

blocking oxide. The cross-over time for this structure is 1 second. After examining the programming

behavior of the SONOS structure mentioned above, we have decided to scale down the nitride

8



thickness and increase the blocking oxide thickness. This scaling scheme is based on the analysis

which promises higher programming field across the multi-layer dielectrics and better charge

retention in the nitride due to the elimination of the carrier injection from the gate terminal as well

as the carrier tunneling to the gate terminal. The scaling effort has produced a new device structure

with the programming speed improvement of one order of magnitude compared to the previous

version. We have then incorporated these new SONOS synaptic weight elements in the linear

adaptive neuron and observed a corresponding one order of magnitude improvement in convergence

speed. Therefore, the direct relationship between the programming characteristics of the SONOS

synaptic weight elements and the performance of the linear adaptive neuron has been proven

experimentally.

Encouraged by the sucess in scaling down the device dielectric structure, we have extended our

research effort in fabricating two new sets of devices. One set of devices have the dielectric

thicknesses similar to Nozaki et. al.25 with 18k tunneling oxide, 49AL nitride and 40k of blocking

oxide. The other set of the devices have an ultra-thin tunneling oxide of 1lX , 49•k of nitride and

40k of blocking oxide. For the first time, the ultra-thin tunneling oxide SONOS devices have been

successfully tested and reported. The programming characteristics of the ultra-thin tunneling oxide

indicate a much better improvement over those published in the literature and the result is shown in

figure 10. In addition, a novel device structure is currently under investigation, namely the buried

channel SONOS device structure. This structure has demonstrated better programming speed as

well as improved retention time compared to the conventional surface channel SONOS device with

similar dielectric dimensions. A typical buried channel SONOS device programming characteristic

is shown in figure 11.

Furthermore, a theoretical analysis of the convergence behavior with a variable convergence

factor has been developed. The variable convergence factor scheme is a direct result of using the

SONOS memory transistors as the reprogrammable synaptic weight elements. The convergence

factor initially starts with a large value, which accelerates the convergence process. As time

progress, the convergence factor reduces its value and aids the linear adaptive neuron converging to

its optimum steady state condition. The analysis is composed of two separate models:

ERASE/WRITE tunneling model and Fowler-Nordheim tunneling model. A computer software has

been written to simulate the convergence behavior of the linear adaptive neuron with the

incorporation of variable convergence factor. Since the device model is physically based, the input
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variables of the simulation software are actual physical device parameters of the SONOS synaptic

weight elements.

A fully computer controlled data acquisition system is an invaluable tool for SONOS synaptic

weight element characterization. Previously, the measurement system required the operator to

manually set up the measurement sequence and hand-recorded the data obtained. An automated

data acquisition system enables the user to set up measurements, analyze the data, and extract

device parameters, all under the control of one console. The automated data acquisition system has

been designed, constructed and fully tested. A block diagram of the system is depicted in figure 12

and the schematic of the HPIB command/data interpreter is shown in figure 13. The system is

composed of an HP 9836 technical computer served as the controller, a HPIB (HP InterfL e Bus)

command/data interpreter which interfaces with the computer and sets up tne erase/write/read

circuit and the pattern generator, a digital storage oscilloscope responsible for capturing the

measured result and transmitting the data back to the computer for analysis. In addition, the wafer

can be placed in an automatic wafer prober with temperature controller to perform wafer leve!

temperature testing. A software control routine has been written to coordinate the instruments in

the system. The source code for control routine can be provided upon request.

Integration of the linear adaptive neuron onto a single silicon wafer is one of the mail goals of

our research efforts. We have acquired a computer aided design software package, developed by the

Mentor Graphics Corporation, and implemented on our SUN Sparc Workstations. The first task of

using this software is to develop a technology file geared to the fabrication sequence of the

Microelectronic Research Laboratory at Lehigh. In addition, the technology file must accommodate

both the conventional CMOS process and the Nonvolatile Semiconductor Memory (NVSM)

+echnology for the SONOS synaptic weight element implementation. Novel processing steps such as

buried channel implants, semiconductor implanted resistor are also incorporated into the technology

file. Since we are creating analog ASICs, area and power consumption must be minimized. We have

adopted a hierarchical design approach from basic functional cell design up to the entire integrated

solid-state linear adaptive neuron design to ensure the minimization of power and area consumption.

The design of the entire integrated adaptive neuron has been completed and the process of making

the masks containing the design is currently undergoing.

The integrated adaptive neuron is composed of five mnain cells, namely, the clock module, the
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analog delay line module, the steering network module, the summing module and the algorithm

module. The clock module generates all the controlling signals and thus synchronizes all the

operations of the linear adaptive neuron to a master clock. The analog delay line module utilizes

switched capacitor scheme to delay the input signal. The steering network module is responsible to

direct proper programming voltages to the SONOS synaptic weight elements during adaptation.

The summing module sums up the weighted input signals and removes the unwanted noise from the

system. The algorithm module uses the information from the summing module to produce

programming voltages for the steering network module according to the clipped data Least Mean

Square error algorithm. A complete layout design is shown in figure 14. A printed circuit board

version of the integrated solid-state linear adaptive neuron is also designed and implemented. The

schematic of the PCB version of the linear adaptive neuron can be furnished upon request.

We believe we have advanced the understanding of the how the SONOS synaptic weight

elements can be used in the implementation of the neural network. In addition, we have

demonstrated success in scaling of the SONOS nonvolatile memory transistors and thus provided a

guideline for future scaling of the SONOS devices. We have also contributed to the state of the art in

the implementation of the artificial neural networks with our design of integrated solid-state linear

adaptive neuron. Under the support of this project, numerous papers have been accepted and a list

of publications is attached in appendix B.

6. Conclusions

The SONOS nonvolatile memory transistor has been shown to be an ideal electronic element

for the electrically reprogrammable analog conductance in an artificial neural network. We have

demonstrated the attractive featuies of this synaptic weight for the use of large neural network

systems, for instance, low programming voltage (5-10V), low power dissipation(<l1W / synapse),

small chip area (estimated 20pm 2/ weight cell for a 1.2 pm feature size), a dynamic range of 60 dB,

good memory retention (20 % window at a projected 10 years period), and endurance beyond 107

erase/write cycles. In addition, the SONOS synaptic weight has inherent resistance to radiation

damage (AVh=O.1V, with Vgs=+5V at 1MRad Co60 radiation). We have been continuing our efforts in

optimizing the modifiable synaptic weights to provide better electrical characteristics for neural

network applications.

We have also incorporated the SONOS synaptic weights into a single-level two tap linear
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adaptive neuron employing a Widrow-Hoffs delta learning rule. The combination of CMOS control

circuits and SONOS synaptic weights has demonstrated the feasibility of integrating these two

technologies onto a single silicon wafer. The initial results are encouraging and promising and

provide insight and direction into the integration of these two technologies to realize large artificial

neural network systems.
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Modifiable Synaptic Weight (c) SONOS Ideal Enery-Band Diagram

13



.... ........sIE'.) OXIDE GUR)Ric

S[C! ......... (LO .(IG XIDE)

....... CIUNPIELING OX!DE'-

......... 'S SUBSTRATE) -- LO

AL ..... ..... 'OHMIC CONTAC7)----

Figure 2. TEM Photomicrograph of the SONOS Synaptic W-Aght

14



Threshold Voltage (V)

2.5

1.5

10 yrs.
0.5

O 1 I III1 I 11II III I I !1l11l I 11111m 1 1 111111 I ', 1111n I 111191 f !11111 11 I I 1 ll tI I1 E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

Delay Time (s) 20 A Tunneling Oxide
65 A Nitride
42 A Blocking Oxide
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Figure 7. Block Diagram of a Single-level Linear Neuron
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Figure 9. Output and Training Signals versus Time Characteristics of a
Two Tap Weight Linear Adaptive Neuron (a) Initialized (b) Adapted
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Appendix A

CMOS/NVSM Fabrication Sequence with Novel Buried Channel Devices

"* Starting Material 3 in p-type 2-3 Ohm/cm

"* N-Well Implant Formation

1. RCA Clean

2. Wet Oxidation for 1000 X , 950 °C, 25 min

3. Photoresist Application

4. Prebake, 98 'C, 30 mrin

5. Mask Level NW

6. Photoresist Development

7. Postbake, 120 °C, 30 min

8. BHF Etch, 10:1, 2 min

9. Implant, Phosphorus, 4.8 x 1012, 100KeV

10. Plasma Photoresist Strip (Oxygen)

11. Photoresist Stripper

12. Dry Oxidation, 500 X , 1200 °C, 5 min

13. Implant Anneal, 1200 'C, 240 min

"* Active Device

1. RCA Clean

2. LPCVD Nitride, 200mTorr, 10:1 ratio, 1000 • , 54 min

3. Photoresist Application

4. Prebake, 98 °C, 30 mrin

5. Mask Level AD

6. Photoresist Development

7. Postbake, 120 'C, 30 min

8. Plasma Etch Nitride (CF 4 )

9. Photoresist Stripper

"* Channel Stop Implant

1. Photoresist Application

2. Prebake, 98 °C, 30 mrin

3. Mask Level F1

4. Photoresist Development
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5. Postbake, 120 'C, 30 mrin

6. Implant, BF 2, 5 x 1011, 145KeV

7. Plasma Photoresist Strip (Oxygen)

8. Photoresist Stripper

9. RCA Clean

10. Wet Field Oxidation, 6500 X, 1100 -C, 60 mrin

11. BHF Etch, 10:1, 1 min

12. Hot H3PO4, 170-C, 35 min

13. BHF Etch, 10:1, 1.5 mrin

14. RCA Clean

15. Wet Oxidation, 900 °C, 20 min

16. BHF Etch, 10:1, 1 min

17. RCA Clean

18. Wet Pad Oxidation, 900 'C, 15 min

19. Implant, Boron, 9 x 1011, 70KeV

20. BHF Etch, 10:1, 2min

21. RCA Clean

22. Anneal, 950 'C, 30 min

Buried Channel Formation

1. RCA Clean

2. Wet Pad Oxidation, 900 'C, 15 min

3. Photoresist Application

4. Prebake, 98 °C, 30 mrin

5. Mask Level BCN

6. Photoresist Development

7. Postbake, 120 °C, 30 mrin

8. Implant, Arsenic, 5x 1011, 75KeV

9. Plasma Photoresist Strip (Oxygen)

10. Photoresist Stripper

11. Photoresist Application

12. Prebake, 98 'C, 30 min

13. Mask Level BCP

14. Photoresist Development

15. Postbake, 120 TC, 30 min

16. Implant, Boron, 5 x 1015, 32KeV

17. Plasma Photoresist Strip (Oxygen)
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18. Photoresist Stripper

19. Photoresist Application

20. Prebake, 98 °C, 30 min

21. Mask Level IR

22. Photoresist Development

23. Postbake, 120 'C, 30 mrin

24. Implant, Phorsphorus, 5 x 1011, 100KeV

25. Plasma Photoresist Strip (Oxygen)

26. Photoresist Stripper

27. BHF Etch 10:1, 2 mrin

Gate Dielectric Formation

1. RCA Clean

2. Triple Wall Dry Oxidation, 800 X, 900 'C

3. Photoresist Application

4. Prebake, 98 0C, 30 mrin

5. Mask Level MW

6. Photoresist Development

7. Postbake, 120 0C, 30 mrin

8. BHF Etch, 10:1, 2 mrin

9. Photoresist Stripper

10. RCA Clean

11. Triple Wall Dry Oxidation, 720 °C, 20 Xk, 9 mrin

12. LPCVD Nitride, 250 mTorr, 735 0C, 120 X , 5 miin, 10:1

13. Wet Blocking Oxidation, 1000 0C, 40 50, m0 min

* Gate Material

1. LPCVD Polysilicon, 800 mTorr, 180 sccm SiH4, 625 0C, 5000 •,30 mrin

2. RCA Clean

3. POC13 Doping, 900 0C, 25 miin Pre-deposition, 30 mrin Drive-in

4. BHF Etch, 10:1, 15 sec.

5. Photoresist Application

6. Prebake, 98 0C, 30 mrin

7. Mask Level PY

8. Photoresist Development

9. Postbake, 120 'C, 30 mrin
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10. Plasma Polysilicon/Gate Dielectric Etch (SF 6 )

11. BHF Etch, 100:1, 1 min

12. Hot H3PO4 Etch, 170 °C, 3.5 mrin

13. BHF Etch, 100:1, 1 min

14. Photoresist Stripper

Source/Drain Formation

1. RCA Clean

2. Dry Pad Oxidation, 900 0C, 200-300 \, 15 mrin

3. Photoresist Application

4. Prebake, 98 0C, 30 min

5. Mask Level N+

6. Photoresist Development

7. Postbake, 120 °C, 30 min

8. Source/Drain Implant, Phorsphorus, 2 x 1015, 100KeV

9. Plasma Photoresist Strip (Oxygen)

10. Photoresist Stripper

11. Photoresist Application

12. Prebake, 98 0C, 30 min

13. Mask Level P+

14. Photoresist Development

15. Postbake, 120 0C, 30 min

16. Source/Drain Implant, Boron, 5 x 1015, 30KeV

17. Plasma Photoresist Strip (Oxygen)

18. Photoresist Stripper

19. RCA Clean without HF Dip

20. Anneal and Drive-in, 950 0C, 60 min

21. BHF Etch, 10:1, 1 min

* Contact Window Formation

1. RCA Clean

2. Wet Oxidation, 900 0C, 1000 , 30 rin

3. Photoresist Application

4. Prebake, 98 'C, 30 min

5. Mask Level CW

6. Photoresist Development
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7. Postbake, 120 'C, 30 miin

8. BHF Etch, 10:1, 3-5 mrin

9. Photoresist Stripper

10. Dilute HF Etch (HF Dip), 30 sec

Metallization

1. RF Sputtering Aluminum, 110 mTorr, 60 min

2. Photoresist Application

3. Prebake, 98 °C, 30 min

4. Mask Level MET

5. Photoresist Development

6. Postbake, 120 °C, 30 min

7. PAN Etch, 45 0C, 2 min

8. Photoresist Stripper

9. Backside Clean-up

10. Backside RF Sputtering Aluminum, 110 mTorr, 60 mrin

11. Preliminary Check ensuring contact window open

12. Organic Clean

13. PMA, 450 °C, 30 min
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